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We extend our previous study of the SU(3) gauge theory with Nf = 2 flavors of fermions in the
sextet representation of color. Our tool is the Schrödinger functional method. By changing the
lattice action, we push the bulk transition of the lattice theory to stronger couplings and thus reveal
the beta function and the mass anomalous dimension γm over a wider range of coupling, out to
g2

≃ 11. Our results are consistent with an infrared fixed point, but walking is not ruled out. Our
main result is that γm never exceeds 0.45, making the model unsuitable for walking technicolor.
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I. INTRODUCTION

For some time we have been studying SU(N) gauge
theories with fermions in the symmetric two-index rep-
resentation of color [1–6]. These are among the theories
that have been proposed [7–9] as candidate models for
walking technicolor [10–13]. Here we present our most
recent work on the SU(3) gauge theory with Nf = 2 fla-
vors of fermions in the sextet representation.

A technicolor theory must supply Goldstone bosons in
order to generate masses for the weak vector bosons. To
that end, the theory must break chiral symmetry sponta-
neously. In order to generate quark and lepton masses as
well while avoiding large effects of flavor-changing neutral
currents, one demands the additional property of walk-

ing. Here a large separation between the technicolor scale
ΛTC and the “extended” technicolor scale ΛETC is at-
tained by having a near-zero of the beta function; the
running coupling stalls for many decades in energy be-
fore chiral symmetry breaking sets in at large distances.
Furthermore, the effect of the large ratio ΛETC/ΛTC on
the technifermion condensate has to be enhanced by a
large anomalous dimension γm of the mass operator ψ̄ψ.
Current estimates [14] require γm ≃ 1.

Since the beta function and γm are the important in-
gredients of walking technicolor, our work has focused
on measuring them. We do this using Schrödinger-
functional techniques [15–19], which are a lattice imple-
mentation of the background-field method. For other
instances of the Schrödinger functional applied to tech-
nicolor candidates, see [20–26].

Our first effort [1] used Wilson’s fermion action with
an added clover term [27] to reduce O(a) effects, and was
limited to lattices of linear size L = 4a and 8a. The re-
sult was a discrete beta function (DBF) that appeared
to cross zero at a renormalized coupling g2 ≃ 2.0, in-
dicating an infrared fixed point (IRFP). An IRFP indi-

cates conformal physics at large distances, the antithe-
sis of confinement. Intending to understand (and re-
duce) discretization effects, we then [4] went to larger
lattices, L/a = 6, 8, 12, 16, and began using hypercu-
bic smearing—fat links [28, 29]—in the fermion action.
This work showed that the IRFP of Ref. [1] was but a
lattice artifact. Thanks to its numerical stability, the
fat-link action also enabled us to simulate at stronger
couplings, out to g2 ≃ 4.6, corresponding to a bare cou-
pling β = 4.4. At stronger bare couplings we encountered
a phase transition that makes it impossible to tune the
hopping parameter κ so as to make the quark mass zero.
The result of Ref. [4], then, is a beta function that is
smaller in magnitude than the two-loop result but that
does not cross zero in the accessible range of couplings.

In Ref. [4] we also calculated the anomalous dimension
γm according to the method of [23, 30–32]. We found
that γm first follows the one-loop curve but its rise slows
at strong couplings so that γm

<∼ 0.6 in the range of
couplings that we could reach.

In our current work on the SU(4) gauge theory
with two-index (decuplet) fermions, which is still in
progress [6], we encountered the same phase transition
that prevents simulation of the massless theory. We
found that augmenting the pure-gauge part of the action
with a new fat-plaquette term can move this transition
to stronger bare coupling and stronger renormalized cou-
pling as well. In the present paper, we present the result
of applying this strategy to the SU(3) theory. The new
action enables us to reach g2 ≃ 11, which is in the vicin-
ity of the zero of the two-loop beta function, discussed by
Caswell [33] and by Banks and Zaks [34]. We find that at
this coupling our beta function as well has crossed zero.
We can further state that the anomalous dimension has
leveled off at γm

<∼ 0.45. We dismiss the earlier values
near 0.6 as tainted by the nearby phase transition, which
is after all a lattice artifact.
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Because of statistical and systematic errors, the sig-
nificance of the zero-crossing in the beta function leaves
something to be desired. We claim, however, that the
errors in γm are under control. Its small value near the
fixed point, whether the latter is real or approximate (as
desired for walking), spells trouble for any use of the
present theory as walking technicolor.

Fodor et al. [35] have studied this theory by apply-
ing alternative scaling hypotheses to the mass spectrum
as a function of the quark mass. Their conclusion favors
confinement over conformal physics, meaning a QCD-like
beta function without an IRFP. These authors have also
published a more extensive analysis of SU(3) gauge the-
ory coupled to twelve fundamental flavors [36], reaching
similar conclusions for that theory. Their method for
testing the hypothesis of (softly broken) conformality has
been criticized in [37, 38].

Kogut and Sinclair [39–41] have been studying the
present theory formulated with staggered fermions, at-
tempting to distinguish confinement from conformality
on the basis of movement of the chiral phase transition
as the lattice size is changed. The results are so far in-
conclusive.

The plan of this paper is as follows. In Sec. II we
present the improved lattice action, which is the only dif-
ference in the simulation method between this paper and
Ref. [4]. For other details of our simulations we refer the
reader to Ref. [4]. We also briefly discuss the ensembles
we generated, and how we deal with the autocorrelations
of our observables. We proceed in Sec. III to present our
results for the running coupling and the beta function.
Here we reanalyze the data of Ref. [4] according to the
lights of our later paper on the SU(2) theory [5], where
we learned to take advantage of the slow running in order
to make maximum use of the several lattice sizes in play.
Naturally, we add in the results of the new simulations
obtained with the augmented gauge action. Section IV
contains our results for the mass anomalous dimension
γm, and we conclude with a brief summary in Sec. V.

II. LATTICE ACTION AND ENSEMBLES

Our action contains a fermion term and two pure gauge
terms. The fermion term ψ̄DFψ is the conventional Wil-
son action, supplemented by a clover term [27] with co-
efficient cSW = 1 [42]. The gauge links in the fermion ac-
tion are fat link variables Vµ(x). The fat links are the nor-
malized hypercubic (nHYP) links of Ref. [28], where for
each link (x, µ) one takes the weighted average Vµ(x) of
links in neighboring hypercubes with weights α1 = 0.75,
α2 = 0.6, α3 = 0.3, reunitarized and subsequently pro-
moted to the sextet representation.

The gauge action is

SG =
β

2N

∑

µ6=ν

Re TrUµ(x)Uν(x+ µ̂)U †
µ(x + ν̂)U †

ν (x)

+
βf

2df

∑

µ6=ν

Re TrVµ(x)Vν (x+ µ̂)V †
µ (x+ ν̂)V †

ν (x),

(1)

wherein the first term is the usual sum of plaquettes of
fundamental thin link variables, while the second term
contains plaquettes made of fat links in the sextet rep-
resentation as in the fermion action. Here N = 3 is the
number of colors while df = 6 is the dimension of the
sextet. The weak-coupling expansion of SG gives the ef-
fective bare coupling [6],

1

g2
0

=
β

2N
+
Tfβf

df

, (2)

where Tf = 5/2 is the group trace in the fermions’ rep-
resentation.1

As before, we employ the hybrid Monte Carlo algo-
rithm in our simulations. The molecular dynamics inte-
gration is accelerated with an additional heavy pseudo-
fermion field as suggested by Hasenbusch [43], multiple
time scales [44], and a second-order Omelyan integra-
tor [45]. We determined the critical hopping parameter
κc = κc(β) by setting to zero the quark mass, obtained
from the unimproved axial Ward identity on lattices of
size L = 12a.

Without a systematic search, we found that choosing
βf = +0.5 removes the strong-coupling phase transition
so that we can run at bare couplings down to β = 2.0; at
smaller β the acceptance deteriorates rapidly, especially
for larger volumes, so that we did not go far enough to
find out if and where the strong-coupling transition turns
up. At β = 2.0, the running coupling for L = 6 turns
out to be g2 ≃ 11. This is close to the two-loop Banks–
Zaks zero at g2 = 13

194
(16π2) ≃ 10.6. We list in Table I

the values of (β, κc) and the number of trajectories run
at each volume, along with the length of the trajectories
and the acceptance. Poor acceptance forced us to shorten
the trajectory length in many cases from the usual value
of 1.

The observables we measure are the (inverse)
Schrödinger-functional running coupling, 1/g2, and the
pseudoscalar renormalization factor, ZP . (We measure
ZP on the same configurations used to determine 1/g2.)
Both of them turn out to have long autocorrelations. We
monitored and controlled this problem by running 4 or
8 streams in parallel at each β and L. After analyzing
each stream separately, we fit the results of the streams
together to a constant. We demanded that the χ2/dof of
the constant fit not exceed 6/3 for 4 streams, or 10/7 for 8
streams. For the largest volume L = 16a at the strongest
coupling β = 2.0, we were not able to overcome the auto-
correlations in 1/g2 even with nearly 30,000 trajectories.

1 We will present a test of weak-coupling universality in our forth-
coming paper on the SU(4) theory.
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TABLE I: Ensembles generated at the bare couplings (β, κc)
for the lattice sizes L used in this study. Listed are the to-
tal number of trajectories for all streams at given (β, L), the
trajectory length, and the HMC acceptance.

β κc L/a trajectories trajectory acceptance
(thousands) length

3.5 0.13349 6 74.8 1.0 .93
8 15.5 0.5 .97

12 37.0 0.5 .88

2.5 0.13991 6 8.8 1.0 .61
8 14.3 1.0 .43

12 35.6 0.5 .50
16 17.1 0.5 .48

2.0 0.14273 6 17.2 1.0 .65
8 14.2 0.5 .61

12 13.4 0.5 .48
16 29.6 0.4 .38

We therefore omit this point from the analysis of the run-
ning coupling. The autocorrelations in ZP , on the other
hand, did allow a consistent determination, and thus we
keep this point in the analysis of the mass anomalous
dimension.

In this paper we present our new results, obtained with
βf = 0.5, alongside the βf = 0 results presented in our
earlier paper [4]. In the earlier study, we were less strict
in controlling the autocorrelations. The main conclusions
of this paper are derived exclusively from the new data.

III. BETA FUNCTION

The computation of the running coupling proceeds ex-
actly as described in Ref. [4], with the same boundary
conditions on the fermion and gauge fields. In brief, one
imposes Dirichlet boundary conditions at the time slices
t = 0, L, and measures the response of the quantum effec-
tive action. The coupling emerges from a measurement of
the derivative of the action with respect to a parameter
η in the boundary gauge field,

K

g2(L)
=

〈

∂SG

∂η
− tr

(

1

D†
F

∂(D†
FDF )

∂η

1

DF

)〉
∣

∣

∣

∣

∣

η=0

.

(3)
The constant K can be calculated directly from the clas-
sical continuum action. Only g0, Eq. (2), appears in the
latter, which implies that K = 12π regardless of βf .

We presented in Ref. [4] the values of the running cou-
pling g2 for a number of values of (β, κc) with βf = 0.
Our new results for βf = 0.5 are shown in Table II, and
both sets are plotted in Fig. 1.2

2 We have dropped from consideration the data obtained in [4] for

TABLE II: Running coupling, Eq. (3), evaluated at the bare
coupling (β, κc) with βf = 0.5 on lattices of size L. For
β = 3.5 we did not perform simulations with L = 16. The
omission of the result for L = 16 at β = 2.0 is explained in
the text.

β 1/g2

L = 6a L = 8a L = 12a L = 16a
3.5 0.2918(13) 0.2859(48) 0.2703(58) –
2.5 0.1454(32) 0.1433(45) 0.1517(36) 0.1449(68)
2.0 0.0915(32) 0.1023(37) 0.1057(51) *

0.05 0.150.1 0.2
a/L

0.2

0.4

0.6

g−2
(L

)

β
f
 = 0

β
f
 = 0.5

one loop

FIG. 1: Running coupling 1/g2 vs. a/L. The crosses are from
simulations with βf = 0 [4]: top to bottom, β = 5.8, 5.4,
5.0, 4.8, 4.6 and 4.4. The circles are from simulations with
βf = 0.5 (Table II): top to bottom, β = 3.5, 2.5, and 2.0. The
straight lines are linear fits [Eq. (5)] to each set of points at
given (β, βf ); the slope gives the beta function. The dotted
line shows the expected slope from one-loop running.

It is convenient to define the beta function β̃(u) for
u ≡ 1/g2 as

β̃(1/g2) ≡
d(1/g2)

d logL
= 2β(g2)/g4 = 2u2β(1/u) (4)

in terms of the conventional beta function β(g2). As
discussed in Ref. [5], the slow running of the coupling
justifies extracting the beta function at each (β, κc) from

(β, βf ) = (4.3, 0) since these were taken in a metastable state
beyond the first-order boundary.
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FIG. 2: Beta function β̃(u) as extracted from the linear
fits (5), plotted as a function of u(L = 8a). The squares
are from the βf = 0 data while the circles are from βf = 0.5.
Plotted curves are the one-loop (dotted line) and two-loop
(dashed line) beta functions.

a linear fit of the inverse coupling

u(L/a) = c0 + c1 log
L

8a
. (5)

With this parametrization, c0 gives the inverse coupling
u(L = 8a), while c1 is an estimate for the beta function β̃
at this coupling. These fits are shown in Fig. 1. Each fit
was done using all the available volumes at the given bare
parameters. Values of the beta function β̃(u) obtained
from these fits are plotted as a function of u(L = 8a) in
Fig. 2. One can see that the results for βf = 0 and for
βf = 0.5 are consistent with each other. Also shown are
the one- and two-loop approximations from the expan-
sion

β̃(u) = −
2b1

16π2
−

2b2
(16π2)2

1

u
+ · · · , (6)

where b1 = 13/3 and b2 = −194/3.

The assumption behind the linear fits is that β̃ is small
so that u(L/a) changes very slowly with the volume; this
behavior is apparent in Fig. 1. Indeed the fits have good
χ2, which justifies our hypothesis. Corrections to the
simple model (5) come from discretization errors, as well
as from the slight deviation from constancy of the con-
tinuum beta function over the range of volumes. Dis-
cretization errors have the form of powers of a/L. We
have found that such corrections are only loosely con-
strained in a generalized fit; thus we prefer to estimate
the uncertainty due to these corrections by redoing the

TABLE III: Pseudoscalar renormalization factor ZP evalu-
ated at the couplings (β, κc), with βf = 0.5, for lattice sizes
L.

β ZP

L = 6a L = 8a L = 12a L = 16a
3.5 0.2171(2) 0.1923(8) 0.1680(5) –
2.5 0.1787(4) 0.1560(5) 0.1325(6) 0.1192(8)
2.0 0.1579(6) 0.1371(6) 0.1183(10) 0.1024(10)

linear fits while omitting the smallest lattice, L = 6a.
The results are shown in the left-hand panel of Fig. 3.
While the error bars have increased, on the whole the
results are stable.3

Deviations from constancy of the (continuum) beta
function give rise to higher powers of logL/a. Adding
the next-to-leading term, at each bare coupling we fit

u(L/a) = c0 + c1 logL/8a+ c2(logL/8a)2. (7)

From the definition of the beta function it follows that c1
continues to provide an estimate for the beta function at
u = 1/g2(L = 8a). The results of these fits are shown in
the right-hand panel of Fig. 3. Once again, there is only
a small change compared to the linear fits of Eq. (5).4

At the two strongest couplings the beta function is pos-
itive, indicating the existence of an infrared fixed point
g∗. For each fit type, we determine the zero of the beta
function from a linear fit of β̃ vs. u, using only the three
βf = 0.5 points. The value of u∗ = 1/g2

∗ obtained from
the linear fits with all volumes included is 0.172(15),
while when L = 6a is omitted we obtain 0.159(29). The
result for the fits of the form (7) is 0.184(17). Taking
as our combined (statistical and systematic) uncertainty
the union of the 1σ intervals, we arrive at5

5 ≤ g2

∗ ≤ 7.5 . (8)

The assumption of a linear zero of the beta function
gives a consistent estimate of its location for all fit types.
This assumption, however, can be questioned. If we con-
sider the beta function obtained from the linear fits with
the smallest volumes omitted (Fig. 3, left panel), we see
that it is possible that the beta function remains nega-
tive even at the strongest couplings studied. Hence, we
cannot rule out a “walking” scenario wherein the beta
function comes close to zero, but never actually turns
positive.

3 Note that dropping L = 6a for the cases where there are only
three volumes leaves no degrees of freedom for the linear fit.

4 Here, too, fitting the cases with only three volumes leaves no
degrees of freedom for the fit.

5 These fits, as well as similar fits in which one or two βf = 0
points are added, all have good χ2. The fit results with the
added βf = 0 points agree with Eq. (8).
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FIG. 3: Comparison of different fit types. Empty symbols as in Fig. 2. Left panel: full symbols derive from linear fits in which
the L = 6a points are omitted. Right panel: full symbols derive from fits to Eq. (7), in which a log2 term has been added.
Results are plotted against u(L = 8a). The filled symbols have been slightly displaced to the right.

In the next section, we will show that, despite this un-
certainty, the behavior of the mass anomalous dimension
make this theory unsuitable for models of walking tech-
nicolor.

IV. MASS ANOMALOUS DIMENSION

We derive the mass anomalous dimension from the
scaling with L of the pseudoscalar renormalization factor
ZP . The latter is calculated by taking the ratio

ZP =
c
√
f1

fP (L/2)
. (9)

fP is the propagator from the a wall source at the t = 0
boundary to a point pseudoscalar operator at time L/2.
The normalization of the wall source is removed by the
f1 factor, which is a boundary-to-boundary correlator.
The constant c, which is an arbitrary normalization, is
1/

√
2 in our convention.

We present in Table III the results of calculating ZP

in our runs with βf = 0.5; we plot them, together with
the βf = 0 results [4], in Fig. 4. Again, the slow running
suggests that we may attempt to extract γm from the
approximate scaling formula

ZP (L) = ZP (L0)

(

L0

L

)γ

, (10)

that is, from the slopes of the lines drawn in Fig. 4. These

6 8 10 12 16
L/a

0.1

0.2

0.3

Z
P

β
f
 = 0

β
f
 = 0.5

FIG. 4: The pseudoscalar renormalization constant ZP

vs. L/a. The crosses are from simulations with βf = 0,
β = 5.8 to 4.4. The circles are from simulations with βf = 0.5
(Table III): top to bottom, β = 3.5, 2.5, and 2.0. The straight
lines are fits to each set of points at given (β, βf ); the slope
gives γm.
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linear fits are analogous to Eq. (5):

logZP (L/a) = c0 + c1 log
L

8a
. (11)

The results are shown in Fig. 5. Similarly, we have also
applied the linear fit with the smallest volume L = 6a
removed, and we considered a fit function analogous to
Eq. (7),

logZP (L/a) = c0 + c1 logL/8a+ c2(logL/8a)2. (12)

In all cases the mass anomalous dimension at g2(L = 8a)
is given by −c1. We show a comparison of the different
fit types in Fig. 5, plotted against the running coupling
g2(L = 8a). It is apparent that the result for γm(g2)
is quite robust under variations in the fitting procedure.
The quality of the fits will be discussed shortly.

A comparison of the new data to the old shows that
there is some disagreement. Of the three points obtained
with βf = 0.5, only the weakest-coupling point is in
agreement with the results of βf = 0 simulations. The
two strongest-coupling points obtained with βf = 0 lie far
above the line connecting the βf = 0.5 points. The for-
mer originate from simulations near the strong-coupling
transition of the βf = 0 theory. This is a lattice artifact,
pushed off to stronger couplings by the introduction of
βf > 0. Thus the disagreement between the two sets of
results should be settled in favor of the new results, lead-
ing us in effect to abandon the last two points in the old
set.

The linear fits to ZP (L/a) that include all volumes
have high χ2 for all three βf = 0.5 points. (See Table IV.
This is apparent in Fig. 4.) Let us discuss them one by
one.

1. At the weakest-coupling point of the βf = 0.5 data
set, obtained at β = 3.5, we have only three vol-
umes. Dropping the smallest volume leaves zero
degrees of freedom in the linear fit, so that there is
really no alternative to the all-volume fit. As can
be seen, however, the latter gives a value of γm in
good agreement with the βf = 0.0 data set, and
both lie close to the one-loop curve. The βf = 0.0
fits do have good χ2. Given the agreement of the
two data sets in this case, we decided that it is
unnecessary to carry out L = 16a simulations at
(β, βf ) = (3.5, 0.5).

2. Next: At (β, βf ) = (2.5, 0.5), when the smallest
volume is dropped, the linear fit has good χ2. No-
tice that this is the point that lies inside the range
that we have determined for g2

∗ in the previous sec-
tion. Indeed at a fixed point Eq. (10) should be-
come exact in the infrared.

3. Finally, for (β, βf ) = (2.0, 0.5) all fits have high
χ2. Nevertheless, the robustness of the result when
changing the fit type makes it unlikely that the true
value of γm could be very different.

All our fits show that γm departs from the one-loop line
and levels off at strong coupling.

0 1 2 3 4 5 6 7 8 9 10 11 12

g
2

0

0.2

0.4

0.6

0.8

γ
m

one loop
β

f
 = 0

β
f
 = 0.5

FIG. 5: Mass anomalous dimension γ(g2) from the linear fits
shown in Fig. 4, plotted against g2(L = 8a). The squares are
from the βf = 0 data while the circles are from βf = 0.5. The
line is the one-loop result.

TABLE IV: Quality of fits for γm.

β χ2/dof
Eq. (11) dropping Eq. (12)

L = 6a
3.5 11/1 – –
2.5 18/2 0.9/1 0.4/1
2.0 12/2 5/1 9/1

V. SUMMARY

In this paper we have continued our study of the SU(3)
gauge theory with two flavors of sextet fermions. A new
term in the lattice action allowed us to explore a much
wider range of the renormalized coupling. The old and
new actions give rise to consistent results for the beta
function where they overlap. For the mass anomalous
dimension there are some disagreements. The results ob-
tained using the new action must be favored over the
old ones, as the source of the disagreement must be the
proximity of the first-order phase transitions—a lattice
artifact—in the old action.

Our results for the running coupling are consistent with
the existence of an infrared fixed point in the range 5 ≤
g2
∗ ≤ 7.5. Nonetheless, in contrast to our SU(2) study [5],

where our strongest-coupling point in the beta function
was positive by at least 6σ, none of the strong-coupling
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FIG. 6: Comparison of different fit types. Empty symbols as in Fig. 5. Left panel: full symbols derive from linear fits in which
the L = 6a points are omitted. Right panel: full symbols derive from fits to Eq. (7), in which a log2 term has been added.
Results are plotted against g2(L = 8a). The filled symbols have been slightly displaced horizontally.

points here are positive by more than 2.5σ, and in the
worst case (dropping L = 6), none are positive by more
than 1σ. Thus a “walking” scenario is not ruled out.

As in the SU(2) theory, γm first follows the one-loop
curve, but when it reaches a value γm ≈ 0.4 it levels off.
The value of γm at the fixed point g∗, if this fixed point
exists, is scheme-independent. We can go beyond this,
however. Throughout the entire range studied, the mass
anomalous dimension is bounded from above,

γm
<∼ 0.45 . (13)

Such a bound is evidently invariant under any redefini-
tion g → g′(g), and hence our bound is entirely scheme-
independent.

A successful model of walking (extended) technicolor
must have a slowly-varying coupling, but no infrared
fixed point; it must also have a large mass anomalous
dimension, γm ≃ 1. While our results do not rule out
walking in the sextet theory, the smallness of γm makes
this theory unsuitable for walking technicolor.
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